On the Cost of CSI Acquisition in Large MIMO Systems

Giuseppe Durisi

Chalmers, Sweden

June, 2013

Joint work with Wei Yang, Günther Koliander, Erwin Riegler, Franz Hlawatsch, Tobias Koch, Yury Polyanskiy

Many thanks to Ericsson Research Foundation!
CSI acquisition limits large-MIMO gains

Pilot symbols

TX

TX

RX

Capacity in the absence of a priori channel knowledge is the ultimate limit on the rate of reliable communication.
CSI acquisition limits large-MIMO gains

Pilot symbols

Capacity in the absence of a priori channel knowledge is the ultimate limit on the rate of reliable communication
Outline

1. Beyond the pre-log
2. Generic block-fading models
3. From asymptotics to finite-blocklength bounds
A simple channel model

<table>
<thead>
<tr>
<th>h_n</th>
</tr>
</thead>
</table>

Constant block-memoryless Rayleigh-fading channel
Coherence time is the bottleneck

- MIMO input-output relation

\[Y \leftarrow M_T \times S + X \leftarrow M_R \]

No closed-form expression available for \(C(\rho) \)

Pre-log \[\chi = \lim_{\rho \to \infty} C(\rho) \log \rho = M^* \left(1 - M^* L \right) \]

where \(M^* = \min \{ M_T, M_R, L/2 \} \)
Coherence time is the bottleneck

- MIMO input-output relation

\[Y = S \times X + W \]

- No closed-form expression available for \(C'(\rho) \)

\[\chi = \lim_{\rho \to \infty} \frac{1}{\rho} \log_{\rho} \left(M^* \left(1 - \frac{M^*}{2} \right) \right) \]

where \(M^* = \min\{M_T, M_R, L/2\} \)
Coherence time is the bottleneck

- MIMO input-output relation

\[Y = S \times X + W \]

- No closed-form expression available for \(C(\rho) \)

- Pre-log [Zheng & Tse, 2002]

\[\chi = \lim_{\rho \to \infty} \frac{C(\rho)}{\log \rho} = M^* \left(1 - \frac{M^*}{L} \right) \]

where \(M^* = \min\{M_T, M_R, L/2\} \)
The underlying geometry: $M_T = M_R = M$

\[
\chi = M \left(1 - \frac{M}{L}\right)
\]
The underlying geometry: \(M_T = M_R = M \)

\[\chi = M \left(1 - \frac{M}{L} \right) \]
The underlying geometry: $M_T = M_R = M$

\[\chi = M \left(1 - \frac{M}{L}\right) \]
The underlying geometry: $M_T = M_R = M$

$$\chi = M \left(1 - \frac{M}{L} \right)$$

Communications on the Grassmannian manifold
Geometry suggests a signaling scheme

- **Uniform distribution** on the Grassmannian
 \[X = \sqrt{L\rho} \ U \]

- **U**: (truncated) **unitary** and **isotropically distributed**

- Unitary space-time modulation (**USTM**)
A conjecture

Case $L \geq M_T + M_R$ (“small MIMO”) [Zheng & Tse (IT 2002)]:

$$C(\rho) = R_{USTM}(\rho) + o(1)$$
A conjecture

Case $L \geq M_T + M_R$ (“small MIMO”) [Zheng & Tse (IT 2002)]:

$$C(\rho) = R_{\text{USTM}}(\rho) + o(1)$$

Conjecture for $L < M_T + M_R$ (“large MIMO”) [Zheng & Tse (IT 2002)]:

- USTM not $o(1)$-optimal
BSTM is the optimal distribution

[Yang, Durisi, Riegler (JSAC 2013)]

BSTM is $o(1)$-optimal when $L < M_T + M_R$ (large-MIMO)

- $X = DU$ with
- U i.d. and unitary
- D^2 diagonal; contains the eigenvalues of a complex matrix-variate beta distributed matrix
Why is BSTM optimal? The SIMO case

Large MIMO $\Rightarrow L < 1 + M_R$
Why is BSTM optimal? The SIMO case

- Large MIMO $\Rightarrow L < 1 + M_R$
- USTM $\Rightarrow x$ i.d., $\|x\|^2 = L\rho$
Why is BSTM optimal? The SIMO case

Large MIMO $\Rightarrow L < 1 + M_R$

USTM $\Rightarrow \mathbf{x}$ i.d., $\|\mathbf{x}\|^2 = L\rho$

BSTM $\Rightarrow \mathbf{x}$ i.d., $\frac{L-1}{\rho LM_R}\|\mathbf{x}\|^2 \sim \text{Beta}(L - 1, M_R + 1 - L)$
Why is BSTM optimal? The SIMO case

- Large MIMO $\Rightarrow L < 1 + M_R$
- USTM $\Rightarrow x$ i.d., $\|x\|^2 = L\rho$
- BSTM $\Rightarrow x$ i.d., $\frac{L-1}{\rho LM_R} \|x\|^2 \sim \text{Beta}(L - 1, M_R + 1 - L)$

$$I(x; Y) = h(Y) - h(Y \mid x)$$
Why is BSTM optimal? The SIMO case

- Large MIMO $\Rightarrow L < 1 + M_R$
- USTM $\Rightarrow x$ i.d., $\|x\|^2 = L\rho$
- BSTM $\Rightarrow x$ i.d., $\frac{L-1}{\rho L M_R} \|x\|^2 \sim \text{Beta}(L - 1, M_R + 1 - L)$

$$I(x; Y) = h(Y) - h(Y | x)$$

$$\approx h(s \|x\|) + 2(L - 1 - M_R) \mathbb{E}[\log \|x\|] + \text{const}$$
Outline

1. Beyond the pre-log
2. Generic block-fading models
3. From asymptotics to finite-blocklength bounds
The “generic” block-fading model

- Constant block-fading model for subchannel \((r, t)\)

\[
h_{r,t} = 1_L \cdot s_{r,t}, \quad s_{r,t} \sim \mathcal{CN}(0, 1)
\]
The “generic” block-fading model

- Constant block-fading model for subchannel \((r, t)\)

\[h_{r,t} = 1_L \cdot s_{r,t}, \quad s_{r,t} \sim \mathcal{CN}(0, 1) \]

- A more accurate model for MIMO CP-OFDM systems

\[h_{r,t} = z_{r,t} \cdot s_{r,t}, \quad s_{r,t} \sim \mathcal{CN}(0, 1) \]

\[z_{r,t} \in \mathbb{C}^L \Rightarrow \text{Fourier transf. of power-delay profile} \]
The “generic” block-fading model

- Constant block-fading model for subchannel \((r, t)\)

\[
h_{r,t} = 1_L \cdot s_{r,t}, \quad s_{r,t} \sim \mathcal{CN}(0, 1)
\]

- A more accurate model for MIMO CP-OFDM systems

\[
h_{r,t} = z_{r,t} \cdot s_{r,t}, \quad s_{r,t} \sim \mathcal{CN}(0, 1)
\]

\(z_{r,t} \in \mathbb{C}^L \Rightarrow \) Fourier transf. of power-delay profile

- We assume that \(\{z_{r,t}\}\) are generic
Generic $\{z_{r,t}\}$ yield larger pre-log

[Riegler, Koliander, Durisi, Hlawatsch (ISIT 2013)]

- $\{z_{r,t}\}$ generic and $M_R > \frac{M_T(L-1)}{L-T}$ with $M_T < L/2$
Generic \(\{z_{r,t}\} \) yield larger pre-log

\cite{Riegler, Koliander, Durisi, Hlawatsch (ISIT 2013)}

- \(\{z_{r,t}\} \) generic and \(M_R > \frac{M_T(L-1)}{L-T} \) with \(M_T < L/2 \)

- Then

\[
\chi_{\text{gen}} = M_T \left(1 - \frac{1}{L}\right)
\]
Generic $\{z_{r,t}\}$ yield larger pre-log

[Riegler, Koliander, Durisi, Hlawatsch (ISIT 2013)]

- $\{z_{r,t}\}$ generic and $M_R > \frac{M_T(L-1)}{L-T}$ with $M_T < L/2$

- Then

$$\chi_{\text{gen}} = M_T \left(1 - \frac{1}{L}\right)$$

- Compare with constant block-fading model

$$\chi_{\text{const}} = M_T \left(1 - \frac{M_T}{L}\right)$$
Intuition behind pre-log increase:
\(M_R = 3, M_T = 2, L = 4 \)

- Constant block-fading: \(\chi_{\text{const}} = M_T \left(1 - \frac{M_T}{L} \right) = 1 \)
Intuition behind pre-log increase:

\[M_R = 3, \ M_T = 2, \ L = 4 \]

- **Constant block-fading:**
 \[\chi_{\text{const}} = M_T \left(1 - \frac{M_T}{L} \right) = 1 \]

- **Generic block-fading:**
 \[\chi_{\text{gen}} = M_T \left(1 - \frac{1}{L} \right) = \frac{3}{2} \]
Outline

1. Beyond the pre-log
2. Generic block-fading models
3. From asymptotics to finite-blocklength bounds
Lost in “asymptotia”?
Lost in “asymptotia”?

- capacity characterizations up to $o(1)$ yield tight bounds 😊
- pre-log sensitive to small changes in the channel model 😞
From asymptotia to tight bounds

[Yang, Durisi, Koch, Polyanskiy (ITW 2012)]

\[
\chi = 1 - \frac{1}{20} = 0.95
\]
From asymptotia to tight bounds

[Yang, Durisi, Koch, Polyanskiy (ITW 2012)]
From asymptotia to tight bounds

[Yang, Durisi, Koch, Polyanskiy (ISIT 2013)]

Replacements

Outage capacity (C_ϵ)

LTE-Advanced codes

Converse

Achievability

Normal Approximation

Blocklength, n

Rate, bits/ch. use

June 4, 2013 DRAFT

G. Durisi

17 / 19
Zero dispersion

- AWGN channel [Polyanskiy, Poor, Verdú (IT 2010)]

\[
R^*_{\text{awgn}}(n, \epsilon) = C_{\text{awgn}} - \sqrt{\frac{V}{n}} Q^{-1}(\epsilon) - O\left(\frac{\log n}{n}\right)
\]
Zero dispersion

- **AWGN channel** [Polyanskiy, Poor, Verdú (IT 2010)]

\[R_{\text{awgn}}^*(n, \epsilon) = C_{\text{awgn}} - \sqrt{\frac{V}{n}} Q^{-1}(\epsilon) - O\left(\frac{\log n}{n}\right) \]

- **SISO quasi static** [Yang, Durisi, Koch, Polyanskiy (ISIT 2013)]

\[\{R_{\text{csirt}}^*(n, \epsilon), R_{\text{no}}^*(n, \epsilon)\} = C_\epsilon - \sqrt[4]{\frac{1}{n}} - O\left(\frac{\log n}{n}\right) \]
Summary

Capacity without a-priori CSI
Summary

Capacity without a-priori CSI

Too conservative estimates?

- USTM \Rightarrow BSTM
- $M (1 - \frac{M}{L}) \Rightarrow M (1 - \frac{1}{L})$
Summary

Capacity without a-priori CSI

Too conservative estimates?
- USTM \Rightarrow BSTM
- $M \left(1 - \frac{M}{L} \right) \Rightarrow M \left(1 - \frac{1}{L} \right)$

From asymptotia to finite blocklength
Backup Slides
Gain of BSTM over USTM for large-MIMO systems

\[R_{BSTM} - R_{USTM} \]

\[\frac{R_{BSTM} - R_{USTM}}{R_{USTM}} \]

\[M_T = \min\{M_R, L/2\} \]

\[\rho = 30 \text{ dB} \]

\[L = 10, 20, 50, 100 \]

\[M_R = 10, 20, 50, 100 \]
Achievability for finite blocklength