Caching: A Feedback Perspective

Mohammad Ali Maddah-Ali

Bell Labs, Alcatel-Lucent

joint work with

Urs Niesen

Communication Theory Workshop
June 2013

Video on Demand

- Video on Demand is getting increasingly popular
 - Netflix Streaming Service
 - Amazon Instant Video
 - Hulu
 - Verizon/Comcast on Demand

— ...

Place Significant Stress on Service Providers Network.

Prefetching can be used to mitigate this stress.

Temporal Behavior

- High temporal traffic variability
- Caching (Prefetching) can help to smooth traffic

Caching (Prefetching)

• Placement Phase: Populate caches

• **Delivery Phase:** Deliver Content

What Should We Cache?

- Early feedback (demands) from users
 - Demands known BEFORE prefetching
 - Cache the requested demand in nearby memory
 - Role of Cache: To deliver part of data locally.
- Late feedback from users (instantaneous demand)
 - Demands are known AFTER prefetching
 - What Should be cached?
 - What is the role of caching?

Problem Setting

Clesion fysin Brack standstream of the file file in idealivery hinase? ...)
How to choose (1) caching functions

Conventional Caching

Gain of Caching: Function (normalized) local cache size

Basic Role of Caching: Part of the file is delivered locally

Comparison

N Files, K Users, Cache Size M

Rate (Early Feedback)

$$R(M) = K(1 - M)$$

Delayed Feedback (Conventional)

$$R(M) = K(1 - \frac{M}{N})$$

Comparison

N Files, K Users, Cache Size M

Conventional Scheme (Recall)

N=2 Files, K=2 Users, Cache Size M=1

Multicasting opportunity only possible for users with the same demand

N=2 Files, K=2 Users, Cache Size M=1

Multicasting opportunity for users with different demand

N=2 Files, K=2 Users, Cache Size M=1

Simultaneous Multicasting Opportunity

N=3 Files, K=3 Users, Cache Size M=1

Multicasting Opportunity between two users with different demands

N=3 Files, K=3 Users, Cache Size M=2

Multicasting Opportunity between two users with different demands

K=N Files and Users, Cache Size M

Objective: Multicast to M+1 users with different demands Need to place the content such that:

- for every possible set of demands,
- and for every subset S of M+1 users,
- and for every subset ${\mathcal T}$ of ${\mathcal S}$ with ${\boldsymbol M}$ users,
- users in \mathcal{T} share a content required by user $S \setminus \mathcal{T}$

N=K Files and Users, Cache Size M

- -N files: $W_1, W_2, ..., W_N$
- Split each file into $\binom{K}{M}$ parts

$$\Rightarrow W_n = (W_{n,\mathcal{T}} : \mathcal{T} \subset [K], |\mathcal{T}| = M)$$

- Cache k: $(W_{n,\mathcal{T}}: n \in [N], \mathcal{T} \subset [K], |\mathcal{T}| = M, k \in \mathcal{T})$

Example: *K=N=3, M=2*

Cache $1=(A_{12}, A_{13}, B_{12}, B_{13}, C_{12}, C_{13})$

N=K Files and Users, Cache Size M

- Assume user \emph{k} asks for $W_{d_{\emph{k}}}$
- Send $\bigoplus_{k \in \mathcal{S}} W_{d_k, S \setminus \{k\}}$ for all $S \subset [K]$ such that |S| = M + 1

Example: *K=N=3, M=1*

For demands of (A,B,C)
$$\{1,2\} \quad \Longrightarrow \quad (A_2 \oplus B_1)$$

$$\{1,3\} \quad \Longrightarrow \quad (A_3 \oplus C_1)$$

$$\{2,3\} \quad \Longrightarrow \quad (B_3 \oplus C_2)$$

Comparison

N Files, K Users, Cache Size M

- Conventional scheme: R(M)=K(1-M/N)
- Proposed scheme: $R(M)=K(1-M/N)(1+KM/N)^{-1}$
- Rate without caching: K
- Local caching gain: 1-M/N
 - Significant when local cache size M is in the order of N
- Global caching gain: (1+KM/N)⁻¹
 - Significant when global cache size KM is in the order of N

Reduction in rate is in the order of number of users.

Comparison

N=50 Files, K=50 Users, Cache Size M=10

Conventional Scheme:

$$R(M) = K(1-M/N)$$

= $50 \times 0.8 = 40$

Proposed scheme:

$$R(M) = K(1-M/N) (1+KM/N)^{-1}$$

= 50 x 0.8 x 0.09 = 3.6

- Factor of 11 times improvement
- In the proposed scheme, there is multicasting among 11 users

Can We Do Better?

Theorem:

The proposed scheme is optimum within a constant factor in rate.

- Information Theoretic Bound.
- The constant gap is independent of the parameters of the problem.
- No significant gain beside local and global gains.

N=4 Files, K=4 Users, Cache Size M

$$R+4M \ge 4 \ \Rightarrow \ R \ge 4-4M$$

N=4 Files, K=4 Users, Cache Size M

N=4 Files, K=4 Users, Cache Size M

$$R \ge \max\{4 - 4M, 1 - M/4, 2 - M\}$$

For general K and N,

$$R \ge \max_s \left(s - \frac{s}{\lfloor N/s \rfloor}M\right)$$

Further Questions

- Do we need to coordinate in the placement phase? No
- Do users' request need to be synchronized? No
- Is caching random linear combinations efficient? No

Conclusion

- In early feedback (demands known before prefetching),
 - the main gain of caching is local.
- In late feedback (demands are known after prefetching):
 - The main gain in caching is global.
 - Enabled by Simultaneous multicasting gain among users with different demands, no matter what the demands are.
 - Global cache size matters, even though memories are isolated.
- Papers available on arxiv:
 - Maddah-Ali, Niesen, Fundamental Limits of Caching
 - Maddah-Ali, Niesen: Decentralized caching attains order-optimal memory-rate trade-off